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Abstract: The forest stock volume (FSV) is one of the key indicators in forestry resource assessments 
on local, regional, and national scales. To date, scaling up in situ plot-scale measurements across 
landscapes is still a great challenge in the estimation of FSVs. In this study, Sentinel-2 imagery, the 
Google Earth Engine (GEE) cloud computing platform, three base station joint differential 
positioning technology (TBSJDPT), and three algorithms were used to build an FSV model for 
forests located in Hunan Province, southern China. The GEE cloud computing platform was used 
to extract the imagery variables from the Sentinel-2 imagery pixels. The TBSJDPT was put forward 
and used to provide high-precision positions of the sample plot data. The random forests (RF), 
support vector regression (SVR), and multiple linear regression (MLR) algorithms were used to 
estimate the FSV. For each pixel, 24 variables were extracted from the Sentinel-2 images taken in 
2017 and 2018. The RF model performed the best in both the training phase (i.e., R2 = 0.91, RMSE = 
35.13 m3 ha-1, n = 321) and in the test phase (i.e., R2 = 0.58, RMSE = 65.03 m3 ha-1, and n = 138). This 
model was followed by the SVR model (R2 = 0.54, RMSE = 65.60 m3 ha-1, n = 321 in training; R2 = 0.54, 
RMSE = 66.00 m3 ha-1, n = 138 in testing), which was slightly better than the MLR model (R2 = 0.38, 
RMSE = 75.74 m3 ha-1, and n = 321 in training; R2 = 0.49, RMSE = 70.22 m3 ha-1, and n = 138 in testing) 
in both the training phase and test phase. The best predictive band was Red-Edge 1 (B5), which 
performed well both in the machine learning methods and in the MLR method. The Blue band (B2), 
Green band (B3), Red band (B4), SWIR2 band (B12), and vegetation indices (TCW, NDVI_B5, and 
TCB) were used in the machine learning models, and only one vegetation index (MSI) was used in 
the MLR model. We mapped the FSV distribution in Hunan Province (3.50 × 108 m3) based on the 
RF model; it reached a total accuracy of 63.87% compared with the official forest report in 2017 (5.48 
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× 108 m3). The results from this study will help develop and improve satellite-based methods to 
estimate FSVs on local, regional and national scales.  

Keywords: FSV; Sentinel-2; RF; SVR; MLR; TBSJDPT; GEE; cloud computing 
 

1. Introduction 

The forest stock volume (FSV, m3 ha-1) is the sum of the stem volumes of all the living trees per 
unit area, and is one of key forest variables for forest resources management and assessments on 
local, region and country scales [1]. FSVs have a strong relationship with the aboveground biomass 
(AGB) and carbon stocks [2]. To understand the spatial distribution of carbon in forests and to derive 
predictions for monitoring carbon stock trends, the FSV must be quantified [3]. Traditionally, the FSV 
is estimated by sampling several plots, which involves substantial manpower, materials, and 
financial resources [4]. With the development of remote sensing technology, particularly the Landsat 
series since 1972, satellite imagery has played an important role in forest inventory. Various studies 
have been performed to estimate the forest variables using low spatial resolution (LSR, LSR ≥ 30 m), 
moderate spatial resolution (MSR, 5 m＜MSR＜30 m), and high spatial resolution (HSR, HSR ≤ 5 m) 
[5] data obtained by different optical sensors ( e.g., Landsat [6–11], MODIS [12–16], SPOT [17–20], 
Quickbird [21–26], RapidEye [27–30]), microwave sensors [31–34], and light detection and ranging 
(LiDAR) sensors [35–39]. The successful applications of these technological tools have laid the 
foundation for the estimation of forest variables, such as the FSV, using remote sensing technology.  

Two recent developments in the Earth Observation (EO) sector have increased the potential to 
improve the efficiency of retrieving global forest attributes. The Sentinel-2A and Sentinel-2B satellite 
series launched by the European Space Agency (ESA) through its Copernicus program in 2015 (S2A) 
and 2017 (S2B) provide nominal five-day revisit imagery across the globe [40]. The Sentinel-2 imagery 
includes 13 spectral bands with spatial resolutions ranging from 10–60 m [40]. One of the main 
purposes of the Sentinel-2 satellite series is vegetation analysis [4]. The Sentinel-2 satellite images 
provided by the operational environment monitoring system based on the European Copernicus 
program may be accessed freely. The different spatial resolution bands, the short revisit period, and 
the rich spectral information have made these images a popular source of remote sensing data for 
forestry research in recent years. For instance, Persson et al. [41] used Sentinel-2 data to classify 
common tree species in central Sweden, observing the highest overall accuracy, i.e., approximately 
88.2%, using all the imagery bands in the final model. A study conducted by Ho´sciło et al. [42] in 
southern Poland affirmed that the Sentinel-2 series could accurately delineate tree species (e.g., beech, 
oak, birch, alder, and larch) with an overall accuracy above 85%. Similarly, Pandit et al. [43] explored 
the ability of Sentinel-2 images to estimate the forest biomass in Nepal; their biomass estimation 
model achieved an R2 = 0.81 and RMSE = 25.57 t ha-1. Zarco-Tejada et al. [44] demonstrated the 
potential of Sentinel-2A data to estimate the chlorophyll content in open canopy conifer forests (R2 > 
0.7 for June; R2 > 0.4 for December). In the Brazilian Amazon, Lima et al. [45] performed comparative 
research on monitoring selective logging using Sentinel-2 and Landsat-8 OLI imagery. These authors 
found that Sentinel-2 data (43.2% detected) were more effective in detecting logging concessions than 
Landsat 8 data (35.5% detected). In Poland, Grabska et al. [46] used the Sentinel-2 time series to map 
forest stand species in the Carpathian Mountains and reported higher accuracy, i.e., a 5–10% 
improvement in overall accuracy compared with only using single date imagery. These studies 
demonstrate the potential of Sentinel-2 for forest vegetation monitoring. 

A typical traditional remote sensing image processing approach includes data downloading and 
local computer processing, which render image processing computationally demanding, and also 
hinder the processing capability for large datasets. Regarding imagery processing, the development 
of cloud computing technology has been fundamentally changing traditional remote sensing image 
processing. The Google Earth Engine (GEE) portal is a powerful cloud-based computing platform for 
image processing [47,48]. The GEE archives massive, publicly-available remote sensing data, 
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provides a programming environment, programming tools, and virtual machines for users with 
relatively simple code, and can process imagery data online. The GEE greatly improves the 
processing efficiency when using substantial amounts of remote sensing data. In recent years, the 
GEE was used in land cover mapping [49–58], agricultural applications [59–63], disaster 
management, and earth sciences studies [64–66]. This remote sensing data processing cloud platform 
makes the rapid processing of Sentinel-2 images covering large areas possible. 

In the FSV estimation field, some studies have examined assessments of the FSVs using remote 
sensing. For instance, Condés et al. [67] found the model prediction of the plot-level growing stock 
volume using satellite images and field data to be useful; the result showed that the adj-R2 increased 
from 0.19 to 0.42. Using the random forests (RF) regression algorithm, Chrysafis et al. [68] estimated 
the FSV based on Sentinel-2 image, which provided relatively better results (R2 = 0.63, RMSE = 63.11 
m3 ha-1) than Landsat-8 OLI images (R2 = 0.62, RMSE = 64.40 m3 ha-1). However, some studies were 
conducted that combined optical images and microwave data to estimate forest variables [69–71]. A 
noteworthy study was conducted by Mauya et al. [72]; these authors assessed the multiple linear 
regression (MLR) models built by Sentinel-1, Sentinel-2, and ALOS PALSAR-2 images to predict the 
FSV, and found that Sentinel-2 images performed best with an RMSEr = 42.03% and a pseudo-R2 = 
0.63. For predicting forest variables, Pham et al. showed that machine learning algorithms were likely 
to become more attractive in remote sensing [73]. These authors suggest that future studies using 
more methods, large areas, and Sentinel-2 data to predict the FSV should be conducted. 

However, ground plot survey data are still indispensable for remote sensing modeling [74]. The 
costs of ground plot surveys have always been high, which has presented some obstacles to the 
estimation of the provincial FSV by remote sensing. In addition, the traditional sample location 
survey technology often produces serious positional deviations, which may impact the modeling 
accuracy of the plot data-based remote sensing estimations and predictions [75]. Thus, traditional 
sample location technology is also an important reason for the inaccurate matching of sample plots 
and pixels, which results in estimation bias. Furthermore, to the best of our knowledge, little to no 
research has been conducted to compare the results of the RF, support vector regression (SVR), and 
MLR using Sentinel-2 images to predict FSVs. In addition, no FSV mapping has been conducted in 
Hunan Province, and this research gap directly affects forest policy making and management. 
Moreover, Hunan Province is located in southern China, where cloudy conditions frequently occur; 
these conditions are a great challenge to mapping the FSV in Hunan Province using remote sensing 
images. 

Hence, Sentinel-2 data on the GEE platform, 459 sample plots, and three algorithms were used 
in this study to achieve the following objectives: (1) to identify and select the most important variables 
of the Sentinel-2 images for FSV estimation using plot-level tree measurements from a large number 
of in situ sites in Hunan Province, southern China, where forest species and stand structures are 
complex; (2) to assess and understand the performance of machine learning algorithms and the 
typical MLR models for FSV estimation; and (3) to map the FSV in Hunan Province. This study will 
help move towards the overall goal of developing and improving GEE-based remote sensing 
approaches to estimate the FSV on local, regional and national scales.  

2. Materials and Methods  

2.1. Study Area 

The study was conducted in Hunan Province, covering an estimated area of 211,854.69 km2. This 
area is a transition zone between the middle and lower ridges of the Yangtze and Xiangjiang river 
basins and the Yungui Plateau. The area has a subtropical monsoon climate with four distinct seasons. 
The annual precipitation ranges from 1200 to 1700 mm, and the mean annual temperatures vary 
between 16 °C and 18 °C [76]. These favorable climatic conditions make Hunan Province one of the 
major forest areas in China. In the study area, the Global PALSAR-2/PALSAR Forest/Non-Forest Map 
product was used as ancillary data to determine the forest areas and show the distribution of the 
training plots and test plots (Figure 1). 
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Figure 1. The study area, Hunan Province, and the distribution of the sampling plots (training data 
and test data). Note: "Forest" is defined as a natural forest with an area larger than 0.5 ha and forest 
cover over 10%. 

2.2. In situ Sample Plot Data Collection 

Based on the historic forest survey data, 10 forest types were chosen for this study. The forest 
types were first analyzed using the 8th National Forest Inventory (NFI) data, and then the top seven 
tree species were selected according to the stock volume. These species included Cunninghamia 
lanceolata, Pinus massoniana, Quercus sp., Pinus elliottii, Populus sp., Cinnamomum camphora, and 
Cupressus funebris. In addition, three mixed forest types were selected, including broad-leaved mixed 
forests, coniferous and broad-leaved mixed forests, and coniferous mixed forests. These ten types 
account for over 98% of the total FSV in Hunan (Table 1). 

Table 1. The proportion of the FSV from the ten forest types in Hunan Province, China. 

Sample plot type Stock volume (m³) Proportion (%) 
Total forest stock volume 330,992,700 100.00 
Cunninghamia lanceolata 109,035,700 32.94 

Pinus massoniana 46,395,900 14.02 
Quercus sp. 5,098,800 1.54 

Pinus elliottii 3,020,400 0.91 
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Populus sp. 2,022,900 0.61 
Cinnamomum camphora 2,244,100 0.68 

Cupressus funebris 1,329,900 0.40 
Broad-leaved mixed forests 84,515,000 25.53 

Coniferous and broad-leaved mixed forests 36,681,900 11.08 
Coniferous mixed forests 34,136,400 10.31 

Total 324,481,000 98.00 
Note: The Latin name of the tree species is in italic. 

A total of 15 survey levels were generated in each forest type. Each forest survey type was further 
divided into five tree height levels and three canopy density degrees (0.2 - 0.39, 0.4 - 0.69, and 0.7 - 
1.0). At each surveyed level, four sample plots were designed and investigated. Finally, 459 useful 
circle sample plots with a diameter of 30 m were obtained from October 15, 2017, to April 30, 2018. 
The tree heights (measured by a VERTEX LASER VL5 manufactured in Haglof, Sweden) and 
diameters at breast height (DBHs) were measured for all individual trees (measured by a caliper with 
a DBH greater than 5 cm) in the circle sample plot. TBSJDPT (Figure 2) was put forward and used to 
locate the sample plot center and the individual trees [39]. 

Base 
station(GNSS1) 
in good mobile 

signal area 
(CORS)

 

Figure 2. TBSJDPT workflow diagram for a given field sample plot. 

To match the pixels of the Sentinel-2 imagery, the sample plot data were resampled using the 
ArcGIS 10.2.2 software (Esri, Redlands, CA, USA). By using the center position of each sample plot, 
the 25 m × 25 m area sample plots were generated by using the ArcTools “Buffer and Feature 
Envelope To Polygon”. The generated shapefile was then used to extract the trees in the sample plot. 
Using the formula built by Hunan Forestry Industry Survey and Design Research Institute, we 
calculated the FSV of each tree, summed it to obtain the FSV of the sample plots, and then scaled it 
up to obtain the FSV per hectare (Table 2). In addition, we used the “boxcox” function in the R 
software to transform the FSV data to a normal distribution (f(y) = yλ) [77]. 

Table 2. The FSV calculation formula of the seven major tree species in Hunan Province [78]. 
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Tree specie Formula 
Cunninghamia lanceolata V = 0.000058777042D1.9699831H0.89646157 

Pinus massoniana V = 0.000062341803D1.8551497H0.95682492 
Quercus sp. V = 0.000050479055D1.9085054H0.99076507 

Pinus elliottii V = 0.000086791543D(1.6638000575+0.0094299757(D+10H))H(0.9693404868-0.0292030826(D+2.5H)) 
Populus sp. V = 0.000041028005D1.8006303H1.13059897 

Cinnamomum camphora V = 0.000050479055D1.9085054H0.99076507 
Cupressus funebris V = 0.000058777042D1.9699831H0.89646157 

Note: The FSV calculation formula of the other tree species are supplied in supplementary 1. 

2.3. Sentinel-2 Images Preprocessing and Variable Calculation  

To obtain a temporal match between the investigated sample plot data and the satellite data for 
the whole of Hunan Province, the GEE filtering options were used to select the Sentinel-2 Level-1C 
(TOA, top-of-atmosphere) satellite images between May 01, 2017, and October 31, 2017, and between 
May 01, 2018, and October 31, 2018. The Level-1C product is an ortho-image in UTM/WGS84 
projection. Level-1C processing includes radiometric and geometric corrections, including 
orthorectification-Digital Elevation Model (DEM, processed from Shuttle Radar Topography Mission 
90 m Digital Elevation Data Version 4) to project the images in cartographic geometry. Per-pixel 
radiometric measurements are provided in TOA reflectances along with the parameters to transform 
them into radiances, and spatial registration was processed on a global reference system with 
subpixel accuracy. In addition, the Level-1C products provide a bitmask band (QA60) to show cloud 
information. More details about the Level-1C products could be found in the Sentinel-2 User 
Handbook [79]. The Level-1C product stored in the GEE has been shown to be suitable for direct use 
for land mapping by Hird et al. [57]. The cloud mask steps were processed in this study. The QA60 
band was first used to identify and mask out the flagged cloud and cirrus pixels. Then, the two 
thresholds of Band 1 ≥ 0.15 and Band 2 ≤ 0.25 were used to mask the remaining clouds and noise 
[57,80]. A total of 3150 images covering the entire study area over the study period were processed. 
After that, the Level-1C TOA reflectance data were resampled with a resolution of 25 m to match the 
spatial resolution of survey plots. Then, we extracted the median values of the characteristic variables 
using the GEE cloud computing platform [58]. The characteristic variables included the multispectral 
bands (B2, B3, B4, B5, B6, B7, B8, B8A, B10, B11, and B12) and the vegetation indices selected according 
to the research of Astola et al. [4], Wittke et al. [81], and Xia et al. [82]. The vegetation indices were 
calculated as follows (Table 3).  

Table 3. Vegetation indices calculated from Sentinel-2 data. 

Characteristic variable Index short name Calculation method 

Vegetation indices 

NDVI_B5 (B5 − B4)/(B5 + B4) 
NDVI_B6 (B6 − B4)/(B6 + B4) 
NDVI_B7 (B7 − B4)/(B7 + B4) 
NDVI_B8 (B8 − B4)/(B8 + B4) 

NDVI_B8A (B8A − B4)/(B8A + B4) 
SAVI 1.5*(B8 − B4)/(B8 + B4 + 0.5) 
RVI B8/B4 
MSI B8/B11 
EVI 2.5*(B8 − B4)/(B8 + 6*B4 − 7.5*B2 + 1) 

EVI2 2.5*(B8 − B4)/(B8 + 2.4*B4 + 1) 
TCW 0.1509*B2 + 0.1973*B3 + 0.3279*B4 + 0.3406*B8 + 0.7112*B11 + 0.4572*B12 
TCB 0.3037*B2 + 0.2793*B3 + 0.4734*B4 + 0.5585*B8 + 0.5082*B11 + 0.1863*B12 



Remote Sens. 2020, 12, 186 7 of 25 

 

TCG − 0.2848*B2 − 0.2435*B3 − 0.5436*B4 + 0.7243*B8 + 0.0840*B11 − 0.1800*B12 

2.4. Selection of Relevant Variables for FSV Estimation  

For the MLR method, the “redun” function was used to avoid collinearity. The parameter R2 was 
set to 0.9. Then, the variables were further filtered based on their significance (i.e., P < 0.05) and 
variance inflation factor (i.e., VIF > 10). For the machine learning methods, in order to obtain the best 
fit model, the selection of the relevant variables for the FSV estimation was carried out using the 
“variable selection using random forests” (VSURF) package [83]. All the extracted data were analyzed 
in order to obtain the variable importance measures (VIM) based on the VSURF package in the R 3.5.3 
software (R Core Team, Vienna, Austria). Importance type 1 represents the percentage increase in the 
mean square error (PercentIncMSE), and importance type 2 represents the increase in the NodePurity 
(IncNodePurity); each had the ability to evaluate the importance of variables [83]. The selected 
variables were then used in RF modeling and SVR modeling.  

2.5. Statistical Models for Estimating the FSV 

The MLR is a statistical technique that uses several explanatory variables (independent variables) 
to predict the outcome of a response variable (dependent variable). The MLR is a widely used method 
to construct regression models for various applications [72,84–87]. The goal of the MLR is to model 
the linear relationship between the explanatory (independent) variables and response (dependent) 
variable (FSV). The formula for the MLR is y = 𝑎 + 𝑏ଵ𝑥ଵ + 𝑏ଶ𝑥ଶ + 𝑏ଷ𝑥ଷ + ⋯ + 𝑏௜𝑥௜ + 𝜀 (1) 

where i is the number of variables, y is the dependent variable, xi is the independent variable, a is 
the intercept, bi is the slope coefficient for the explanatory variable, and ε is the error term of the 
model. 

The SVR maps the output data to the high-dimensional feature space by defining the kernel 
function and constructs an optimal classification hyperplane in this space. The SVR can be regarded 
as a linear algorithm in high-dimensional space [88]. The SVR has been proven to be a popular method 
for regression modeling [89–92]. In this study, it was constructed using the following SVR function 
from the training process: FSV =  ෍ 𝛼௜௡௜ୀଵ 𝑘(𝑥௜; 𝑥) + 𝑏 (2) 

where 𝑘(𝑥௜; 𝑥) is the kernel function, 𝛼௜ is the Lagrange multiplier, 𝑥௜ is the training vector, and 𝑏 
is the bias term in the regression. 

Using the e1071 package in the R 3.5.3 software, the parameters of the SVR were optimized and 
cross-validated. The radial basis function (RBF) kernel was selected following previous studies 
[71,93]. Then, the best regression model was optimized by the tune function (the SVM-type is eps-
regression, the SVM-Kernel is the radial, cost is set as 2c (c is 2-9 sequence with an interval of 1), epsilon 
is set as a 0-1 sequence with an interval 0.01, and gamma is default). 

The RF is a decision tree algorithm and an effective machine learning model for predicting a 
forest of variables. Based on its powerful modeling capabilities, the RF regression has been widely 
used in scientific research [94–99]. The principle of the RF algorithm is to use the bootstrap method 
to randomly extract multiple samples to generate a group of regression trees (ntree) from the original 
sample population. To build each tree, a randomly-chosen subset of predictors is used at each 
splitting node (mtry) by the RF, and there is no need to prune each tree grown. For each tree grown, 
a procedure named the “out-of-bag” (OOB) error was used to independently build each tree based 
on the training data. The variable importance (VI) and OOB error were calculated by the RF algorithm 
[100]. 

The OOB error can be estimated as follows: 



Remote Sens. 2020, 12, 186 8 of 25 

 

𝑂𝑂𝐵௘௥௥௢௥ =  1𝑛 ෍ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ  (3) 

where 𝑦௜ is the measured FSV, 𝑦ො௜ is the predicted FSV, and n is the total number of OOB samples.  
After selecting the variables, the number of grown trees (ntree) and the number of variables 

(mtry) at the time of node splitting were determined using the minimum mean square error as the 
criterion. First, the RF model’s ntree parameter was set to 500, and the mtry parameter was set to the 
total number of variables. Then, the mean square error was used to determine the best number of 
variables (mtry) and the best number of trees (ntree). After calculating the best parameters, the RF 
regression model was established and tested. In our three models, 70% of the total samples were used 
for training samples, and 30% of the overall samples were used for testing. 

Two statistical indicators were selected to evaluate the performance of the MLR, SVR, and RF 
models [88,101]. The coefficient of determination (R2, Equation (4)) is the proportion of the variance 
in the dependent variable that can be explained by the independent variables. The root mean square 
error (RMSE, Equation (5)) is the standard deviation of the residuals, which is the difference between 
the surveyed data and the fitted model.   𝑅ଶ = 1 − ∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ∑ (𝑦௜ − 𝑦ത)ଶ௡௜ୀଵ  (4) 

RMSE = ට∑ (௬೔ି௬ො೔)మ೙೔సభ ௡   (5) 

where 𝑦௜  is the measured FSV, 𝑦 is the mean measured FSV, 𝑦ො௜ is the predicted FSV, i is the same 
index, and n is the sample plot number. 

3. Results  

3.1. Characteristics of the in Situ FSV Data 

For this study, 321 out of the 459 total sample plots (70%) were used as the training data, and 
138 out of the 459 total sample plots (30%) were used as the test data. Table 4 lists the summarized 
statistics of the plot-level training data and test data. For the training data, the minimum FSV per 
hectare was only 1.42 m3, and the maximum FSV per hectare was 577.49 m3. For the test data, the FSV 
per hectare ranged from 4.25 m3 to 450.11 m3. These large data ranges were the reason for the large 
variances in the training and test data. For the training data and test data before transformation, it is 
clear that the training data and test data did not follow a normal distribution (Figure 3, the green 
histograms with red curves). A λ = 0.3030303 was calculated and used to transform the training data 
and test data, and it is clear that the data were transformed into an approximately normal distribution 
(Figure 3, the red histograms with green curves). 

Table 4. Summary statistics for the FSVs of the training data and test data. 

Descriptive statistics Training data  Transformed training data Test data Transformed test data 

Mean  121.11 (m3 ha-1)  3.98  120.53 (m3 ha-1)  3.95  

Median 103.33 (m3 ha-1)  4.08  98.37 (m3 ha-1)  4.02  

Minimum value 1.42 (m3 ha-1)  1.11  4.25 (m3 ha-1)  1.55  

Maximum value 577.49 (m3 ha-1)  6.87  450.11 (m3 ha-1)  6.37  

Variance 9019.13  1.15  9053.02  1.24  

Kurtosis 2.73  − 0.23 0.22  − 0.89 

Skewness 1.40  − 0.18 0.89  − 0.11 

Number of sample plots 321 321 138 138 



Remote Sens. 2020, 12, 186 9 of 25 

 

Training data before transforming

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0
0.

00
3

Test data before transforming

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0
0.

00
3

0.
00

6

Training data after transforming

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

Test data after transforming

D
en

si
ty

0 2 4 6 8

0.
00

0.
15

0.
30

 

Figure 3. Training and test data distributions before and after transforming. The green and red 
histograms represent the distribution before and after data transformation, respectively; the red and 

green curves represent the distribution before and after data transformation, respectively. 

3.2. Major Variables Related to the FSV Data 

Figure 4 shows the results of the numbers of selected variables using the RF algorithms provided 
by the VSURF package. First, no variables were eliminated based on the VI mean and VI standard 
deviations. Based on the OOB error, eight variables were selected: B2, B3, B4, B5, B12, TCW, TCB, and 
NDVI_B5. The PercentIncMSE (percent increase in the mean square error) and IncNodePurity 
(increase in the NodePurity) estimated from the RF OOB data were used to rank all predictor 
variables according to their abilities to estimate the FSV; the higher the value, the more important the 
variable (Figure 5). 
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Figure 4. The variable selection based on the VSURF package. The top graphs illustrate the removal 
of the negative importance variables’ threshold based on the VI mean (left, the horizontal red solid 
line represents the threshold position) and VI standard deviation (right, the green piece-wise line 
represents prediction values given by a CART model and the horizontal red dotted line represents 
the minimum prediction value), and the bottom graphs are related to the interpretation (left, the 
vertical red solid line represents the minimum error position) and prediction (right) and show the 
number of variables selected according to the OOB error. 
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Figure 5. Plots of the selected variable importance. (left) %IncMSE, and (right) IncNodePurity. 

For the MLR algorithm, 14 out of the 24 variables were eliminated by the “redun” function to 
avoid multicollinearity; these eliminated variables were NDVI_B8, EVI2, SAVI, NDVI_B7, B7, B8A, 
TCB, NDVI_B6, B6, B3, B11, TCG, NDVI_B8A, and B4. The remaining variables were reselectedusing 
the P significance in linear modeling. Finally, B5 and MSI were selected for the MLR model.  



Remote Sens. 2020, 12, 186 11 of 25 

 

3.3. Optimal Regression Model for the RF, SVR, and MLR 

For the RF model, before selecting the best RF regression model, the mtry and ntree parameters 
must first be determined. Based on the number of selected variables, an error rate loop algorithm was 
used to calculate the smallest error rate. In Figure 6a, it is clear that mtry = 5 resulted in the smallest 
error rate. In Figure 6b, ntree = 257 was determined to be the best parameter.  
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Figure 6. (a) Distribution of the error rates versus mtry, and the best mtry was 5. (b) Distribution of 
the error versus the number of trees, and the best ntree was 257. 

In the SVR algorithm, 909 models were trained. The best model that was selected had cost = 8, 
gamma = 0.125, and epsilon = 0.68. Then, the best SVR regression was used to build the regression 
model for the FSV prediction. In the MLR algorithm, the results of the MLR model are shown in Table 
5. 

Table 5. Coefficient of the MLR model. 

   Estimate Std. Error t value P 
(Intercept) 5.6320995 0.9240733 6.095  3.17e − 09 *** 

B5  − 0.005478 0.0004089 − 13.397 < 2e − 16 *** 
MSI  1.9034603 0.4423448 4.303  2.24e − 05 *** 

 *** P values at significance level of 0.001. 
A basic hypothesis test was made for the linear model (Figure 7). In Figure 7, the top left graph, 

the residuals versus the fitted values, was used to test the linearity assumptions. The scatter points 
were concentrated near a straight line, which indicated that the linear relationship was good. The top 
right graph was a normal Q-Q plot, which was used to test the normality. The scatter points were 
mainly concentrated along the straight line, which indicated that the residual normality was good. 
The bottom left graph was the scale-location graph, which was used to test the homoscedasticity. The 
points were randomly distributed around the curve, which indicated that the homoscedasticity 
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assumption was accepted. The bottom right graph used the residual and leverage to determine the 
outliers, and no high leverage points or strong influence points were found. 
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Figure 7. Plot training results of the MLR model. 

3.4. Comparison of the Predicted FSV Estimates among the Three Models (MLR, SVR, and RF) 

In the training phase, the MLR model had the worst performance with the smallest R2 = 0.38 and 
highest RMSE = 75.74 m3 ha-1 (Figure 8a). This model was followed by the SVR model with an R2 = 
0.54 and RMSE = 65.60 m3 ha-1 (Figure 8c). The best performance among the three algorithms was that 
of the RF model, which had the highest R2 = 0.91 and smallest RMSE = 35.13 m3 ha-1 (Figure 8e). In the 
test phase, it was clear that the RF model also performed the best among the three kinds of models 
(R2 = 0.58, RMSE = 65.03 m3 ha-1) (Figure 8f); the next best was the SVR model, with an R2 = 0.54 and 
RMSE = 66.00 m3 ha-1 (Figure 8d); the MLR model performed the worst, with the smallest R2 = 0.49 
and highest RMSE = 70.22 m3 ha-1 (Figure 8b). 
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Figure 8. Comparison between measured and predicted FSVs using the three algorithms. (a) MLR 
model prediction versus measured FSV using the training data, (b) MLR model prediction versus 
measured FSV using the test data, (c) SVR model prediction versus measured FSV using the training 
data, (d) SVR model prediction versus measured FSV using the test data, (e) RF model prediction 
versus measured FSV based on the training data, and (f) RF model prediction versus measured FSV 
based on the test data. 
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3.5. Modeling Results Comparison between Selected Variables and all Variables 

Table 6 shows the modeling performance of all variables and selected variables under the 
machine learning methods. In the training phase, the result of the RF model with all variables (e.g., 
R2.training = 0.92, RMSE = 34.83 m3 ha-1) is basically the same as that of the RF model with the selected 
variables (e.g., R2.training = 0.91, RMSE = 35.13 m3 ha-1). And the results of the RF model are better 
than those of the SVR model with all variables (e.g., R2.training = 0.61, RMSE = 60.58 m3 ha-1) and 
selected variables (e.g., R2.training = 0.54, RMSE = 65.60 m3 ha-1). In the test phase, the result of the RF 
model with selected variables (e.g., R2.training = 0.58, RMSE = 65.03 m3 ha-1) is basically consistent 
with the result of the RF model with all variables (e.g., R2.training = 0.58, RMSE = 66.04 m3 ha-1). 
Similarly, the results of the RF model in the test phase are better than those of the SVR models with 
all variables (e.g., R2.training = 0.51, RMSE = 67.86 m3 ha-1) and selected variables (e.g., R2.training = 
0.54, RMSE = 66.00 m3 ha-1). In the SVR model, the performance of all variables in the training phase 
is slightly better than that of the selected variables; and in the test phase, the performance of the 
selected variables is slightly better than that of the all variables. 

Table 6. The performance comparison of machine learning methods under different variables. 

  Methods Best model parameters R2.training RMSE.training (m3 ha-1) R2.test RMSE.test (m3 ha-1) 

Selected variables 

RF 
mtry = 5 

0.91 35.13 0.58 65.03 
ntree = 257 

SVR 

cost = 8 

0.54 65.60 0.54 66.00 gamma = 0.125 

epsilon = 0.68 

All variables 

RF 
mtry = 7 

0.92 34.83 0.58 66.04 
ntree = 495 

SVR 

cost = 4 

0.61 60.58 0.51 67.86 gamma = 0.04166667 

epsilon = 0.57 

3.6. Map of the FSV Estimation in Hunan Province in 2017 

First, the Global PALSAR-2/PALSAR Forest/Non-Forest Map product was used to extract the 
forest area in Hunan Province. A total of 143,258,710 pixels with a 25 m spatial resolution were 
defined as forest areas in this product (Figure 9. left), totaling 8.95 × 106 ha of forest area. Then, the 
selected variables and the best RF model were used to estimate the FSV in the study area. The right 
of Figure 9 shows that the FSV in Hunan Province ranged from 12.7421 m3 ha-1 to 269.649 m3 ha-1. The 
mean FSV per hectare was 39.09 m3, and the total FSV in Hunan Province was 3.50 × 108 m3.  
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Figure 9. The PALSAR-2/PALSAR Forest/Non-Forest Map in 2017 (left), and the predicted FSV map 
in 2017 in Hunan Province (right). 

4. Discussion 

The main purpose of this study was to evaluate the potential variables of the Sentinel-2 data 
using different algorithms to predict the FSV based on reliable field survey data, and to map the FSV 
for the first time in the southern province of China. The FSV is an important variable of forest 
management reports at the provincial and national levels. The use of free remote sensing imagery 
(e.g., Sentinel-2) and cloud processing platforms (e.g., GEE) to process and build prediction models 
for estimating and mapping the FSV is especially important in southern China. One of the reasons 
for this is that the area is covered by clouds many days each year, which seriously affects provincial 
forest mapping research that uses remote sensing images. Another reason is that the provinces of 
southern China are an important part of China's forestry. Through this research, we can effectively 
use the Sentinel-2 data with the GEE platform and apply the RF algorithm to spatially map the FSV 
in Hunan Province. In addition, this approach is also an effective way to conduct forest carbon 
monitoring, which is sensitive and important to climate change. 

Based on the spectral bands and vegetation indices extracted from Sentinel-2 data, this study has 
shown that B5 (Red-Edge 1) was the most important variable when estimating the FSV using both 
the machine learning methods and MLR method, which had been confirmed in recent studies 
concerning forest prediction [102] and tree species classification [103]. In the gross primary 
productivity field (GPP), Lin et al. found that the red-edge band was useful for estimating the GPP, 
and noted that the red-edge reflectance was sensitive to the leaf chlorophyll content [104]. In addition, 
the leaf chlorophyll content was an important forest variable. Except for B5, the modeling variables 
selected by the machine learning models and the MLR were not the same. However, the accuracies 
of the different model verification results were not very different, which shows that B5 has a 
substantial advantage in estimating the FSV. In the study conducted by Chrysafis et al. [68], when 
using the RF algorithm and Sentinel-2 images to estimate the FSV in a Mediterranean forest 
ecosystem, they found that the most important variable was B11 (SWIR 1), which was different from 
our findings in this study. Our research was consistent with a study conducted by Astola et al. [4], 
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which showed that B5 was the most important variable with which to predict the FSV. Regarding the 
FSV prediction performance, we compared our R2 that measured our predictive capability with that 
of Astola et al. [4], who conducted research using Sentinel-2 and multilayer perceptron and regression 
trees to estimate the FSV; we found that our results (R2 = 0.58) were slightly better than their best 
results with a multilayer perceptron model (R2 = 0.56). This observation may occur because the RF 
algorithm usually performs better than the multilayer perceptron [71], or the sample survey data 
based on our advanced positioning technology improved the estimation accuracy. Regarding the 
variable selection in machine methods, our results also showed that the traditional vegetation indices 
did not perform well when estimating the FSV in this study, and Lu et al. [105] found the same trend, 
i.e., that the original band performed better than vegetation indices when estimating the FSV. Table 
6 shows that the training and test results before and after selecting the variables of the RF modeling 
were basically the same, which indicated that the VSURF package was a good tool with which to 
select variables for RF modeling. However, Table 6 also shows that the selected variables had a certain 
impact on SVR modeling. This is because the VSURF package is a variable selecting tool based on the 
RF model, and is not fully applicable to the SVR model. 

Figure 8 shows that the three algorithms have some saturation problems in the training and test 
phases. In the training phase, the maximum value of the RF estimation (363.63 m3 ha-1) was larger 
than the other two algorithms (SVR, 336.79 m3 ha-1; MLR, 308.39 m3 ha-1), and the minimum value of 
the RF estimation was smaller (4.97 m3 ha-1) than the other two algorithms (SVR, 6.52 m3 ha-1; MLR, 
5.52 m3 ha-1). In the test phase, although the maximum value estimated by MLR (290.26 m3 ha-1) was 
the largest, the minimum value (7.48 m3 ha-1) was the smallest, and the data range of the RF estimated 
value was the largest (7.48–272.23 m3 ha-1). This indicated that the RF model was the best model with 
which to estimate the FSV. In addition, the RF exhibited the best performance among the three 
algorithms according to the R2 and RMSE. When using the RF model to predict the FSV in Hunan 
Province (Figure 9), we found that the smallest FSV per hectare was 12.7421 m3, which was larger 
than the smallest FSV measured in the field (1.42 m3 ha-1), and the largest FSV per hectare was 269.649 
m3, which was smaller than the highest FSV measured (577.50 m3 ha-1). This result indicated that the 
RF model overestimated the low FSV values and underestimated the high FSV values, which may be 
due to the common saturation problem in optical remote sensing vegetation analyses [83]. The 
overestimation problem could be caused by the understory vegetation (e.g., shrub and grass), which 
typically impacts the reflectance values. The high FSV areas often have complex canopy structures, 
which may affect the reflectance values. A similar study by Ou et al. [106] also found this was a 
common problem in the estimation of the FSV or biomass using multispectral remote sensing data. 
However, if the forest area with a low FSV and the forest area with a high FSV reach a certain ratio, 
the underestimation and overestimation problems of the RF will reach a certain balance. For this 
reason, when using the RF to estimate the FSV over a large area, it may offset some errors caused by 
the defects of the model or the image data. Regarding the SVR model, Figure 8c shows two distinct 
trend lines consisting of points. This trend was caused by the large data volume (n = 321 in the 
training phase) and parameter optimization. Due to the parameter optimization, as many samples as 
possible were within this hyperplane; therefore, many data points were concentrated on the edge.  

After mapping the FSV for the whole of Hunan Province, a statistic using the ENVI 5.3 “Quick 
Stats ” tool (Exelis Visual Information Solutions, Boulder, Colorado) was calculated, and the mean 
FSV was 39.09 m3 ha-1. For comparison, we calculated the mean FSV of Hunan Province based on the 
Analysis Report of Hunan Forestry Statistics Annual Report in 2017, and found that the value was 
42.15 m3 ha-1 [107]. The estimation accuracy of the mean FSV reached 92.74%. However, for the sample 
plot data, the mean values were 121.11 and 120.53 m3 ha-1 for the training and test, respectively. This 
result shows that among the sample plots we selected, there were too few samples with a small FSV. 
Using these data to directly model may cause some errors in the model prediction results. However, 
before modeling, a normal transformation was performed, and the mean values were 3.97 (Table 4) 
and 3.04 (39.09λ) before and after transformation, respectively (Figure 3). The normal transformation 
narrowed this gap, which may compensate for the impact of uneven data sampling to some extent 
[108]. Finally, the total FSV that we predicted in Hunan Province was 3.50 × 108 m3 in forest areas. 
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At the end of 2017, the Hunan provincial government published a report on the FSV stating that the 
total value was 5.48 × 108 m3 [107]. Based on this observation, the RF model reached an accuracy of 
63.87% in predicting the FSV. We also focused on the forest area reported on the government report 
in 2017; this showed that the forest area was 1.3×107 ha [107], which was different from that extracted 
from the PALSAR-2/PALSAR Forest/Non-Forest product in 2017 (8.95 x 106 ha). This difference is 
also an important factor that affects the estimation result of the FSV. In addition, we paid attention to 
the study conducted by Shen et al. [83], who predicted the forest biomass in Guangdong Province 
using the RF model and remote sensing data, which achieved slightly lower accuracy (58.88%) than 
that observed in this study. However, one important difference is that Shen et al. estimated the 
biomass, and we estimated the FSV. 

Since Hunan Province is located in southern China, the greatest challenge was to obtain images 
with little or no cloud data that covered the whole province. To reduce the effects of clouds and noise 
on the images, we used three masking methods. To reduce or even eliminate the holes caused by the 
masks on the images, we processed a total of 3150 images and extracted the median values of the 
overlapping image parts. As all the sample plots were in a relatively homogeneous forest 
environment (at least within 30 meters of the sample plot boundary is homogeneous), the sample 
plots vector file was used to extract the mean values of the spanned pixels. Through this method, 
high-quality remote sensing data for southern China can be effectively obtained, and the potential of 
using Sentinel-2 to map the FSV in southern China is increased. Such a potential is truly important in 
southern China, where forest plantations grow rapidly in order to meet the demand for wood 
products, and for ecological protection [109]. The dates of the selected remote sensing image are 
mainly based on two considerations. First, the trees in the forest grow slowly in one year. The 
difference between the acquisition time of the sample plot data and the remote sensing data is less 
than one year, which has little effect on the results. In addition, we also use the median value of the 
two-year growing season to reduce this effect. Furthermore, we consider that the spectral information 
between May and October is better, but the image in one year could not cover the entirety of Hunan 
Province, so we chose to use the data for two year periods. 

Although our prediction results were good, some limitations of the study should be noted. The 
first are the limitations of the Sentinel-2 Level-1C TOA data. While three mask steps were used to 
process the Sentinel-2 Level-1C TOA data, this approach could not eliminate the bidirectional 
reflectance effects from changing the sun–sensor–surface geometries between the acquisitions. 
Further processing steps that transform the TOA data to bottom-of-atmosphere (BOA) surface data 
would improve the results; however, the GEE platform did not offer an online tool for this purpose. 
The local tools that can convert large-scale Sentinel-2 TOA data to BOA data are limited. According 
to Hird et al. [57], although the TOA data were used, the annual composites of Sentinel-2 input 
variables would suffice to minimize the bidirectional effects to an acceptable degree. In this study, 
since approximately two years of Sentinel-2 data were used to extract the band characteristics and 
vegetation indices, it would be acceptable for this purpose. The second limitation is the modeling 
algorithm. Although the RF algorithm has been proven to exhibit outstanding performance, the 
phenomena of the underestimation of high values and the overestimation of low values always exists. 
The innovation of the algorithms to solve this problem will be a future research direction. The third 
limitation is the value distribution of the sample data. Although we conducted data transformation, 
this approach still cannot avoid the modeling bias caused by the uneven distribution of the data 
values of the sample. The fourth limitation is that not all the data analysis work can be implemented 
on the GEE platform. Due to the lack of some regression functions, we had to use the R software for 
auxiliary analyses, which seriously reduced the efficiency of the data analysis. As the Sentinel-2 BOA 
data are being continuously processed and uploaded to the GEE platform, we believe that the global 
data products will soon be available on the GEE platform. At the same time, we also noticed the good 
performance of deep learning algorithms in forest variable estimations [110]. Based on these 
limitations, we suggest using Sentinel-2 BOA data, deep learning algorithms, and more reasonable 
sample plot data to conduct FSV estimation research in the future. 
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5. Conclusions 

In this study, based on the Sentinel-2 derived variables, three modeling algorithms (RF, SVR, 
and MLR) were compared to explore the possibilities of using the Sentinel-2 imagery variables for 
FSV estimation; the RF model was found to be the best method. The red edge B5 was found to be the 
most important variable in both the machine learning methods and the linear regression method for 
FSV estimations. Finally, the best RF model was used to predict the FSV and assess the FSV prediction 
accuracy. The FSV mapping filled the gaps in FSV study in Hunan Province, China, and provided a 
reference for the distribution of the FSV in the region. Furthermore, the study also indirectly proved 
the potential to use Sentinel-2 data combined with the RF model to estimate FSVs, laying the 
foundation for plotting the FSV in southern China. Future research will estimate FSVs using Sentinel-
2 BOA data and deep learning algorithms. 
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